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A method, based on the use of certain asymptotic initial conditions together with the 
compound matrix method, is presented for the numerical solution of the Orr-Sommerfeld 
equation on infinite intervals. The asymptotic initial conditions require the numerical 
integration of a first-order nonlinear equation which is related to the “inviscid” solution and 
the use of a modified Liouvill&reen approximation for the “viscous” solution. The method 
is applied to both the Blasius and the asymptotic suction boundary-layer profiles and it is 
shown that use of the asymptotic initial conditions requires a smaller interval of integration 
than the usual constant tail conditions. A discussion of a third-order eigenvalue problem is 
also given to illustrate how problems with a nonconstant tail can be treated by the compound 
matrix method. 

1. INTRODUCTION 

In the numerical solution of eigenvalue problems on infinite intervals, a common 
method of proceeding is to replace the infinite interval, [0, a), say, by a finite one, 
[0, z~], say. The main problem then is to determine the appropriate boundary 
conditions to be imposed at z = z,. In the “constant tail” case, z, must be chosen 
sufficiently large so that the coefficients in the governing equation can be approx- 
imated for z > z, by their limiting values as z -+ co. On this interval the limiting 
form of the governing equation can be solved exactly and the appropriate boundary 
conditions at z = z, then follow by requiring continuity of the solution and its 
derivatives at z = z,. 

When the governing equation contains a large parameter, however, it is often 
possible to obtain asymptotic approximations to the solutions with respect to the 
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parameter. In this paper, therefore, we wish to show how this approach leads to 
certain “asymptotic boundary conditions” which can then be imposed at a point z, , 
say, where .zr can often be chosen significantly smaller than z,, thereby reducing the 
interval over which numerical integration is required. 

The basic ideas involved in this asymptotic method were suggested by a study of 
the Orr-Sommerfeld equation which governs the stability of laminar boundary layers 
in the parallel flow approximation and this problem will be used therefore to describe 
the essential features of the method. Consider then the Orr-Sommerfeld equation 

(iaR)-'(D' - a2)2 qi - ((U - c)(D' - a')# - V'#} = 0, (1.1) 

where #(z)eiO(x-c’) is the disturbance stream function in the usual normal mode 
analysis, U(z) is the basic velocity distribution, R is the Reynolds number based on 
the boundary-layer thickness, and D = d/dz. In this paper, we consider only the 
temporal stability problem in which the wave number a is taken to be real while the 
wave speed c is in general complex. The point zc, where U(z,) - c = 0 and U’(z,) = 
U; # 0, is called a simple turning point of (1.1) and it plays an important role in both 
the asymptotic and numerical treatment of the problem. The boundary conditions for 
this problem are 

4(O) = f(O) = 0 

and 

4(z>,#‘(z)+O as z+ co. (1.2b) 

For fixed values of a and R, Eqs. (1.1) and (1.2) thus define an eigenvalue problem 
with complex eigenvalue c. 

In Section 2 we begin with a brief review of the constant tail conditions and then 
proceed to the derivation of the asymptotic initial conditions. For this purpose it is 
necessary to obtain asymptotic approximations to the bounded solutions of (1.1). 
One of these solutions is of “inviscid” type and leads to the integration of a first- 
order nonlinear equation; the other solution is of “viscous” type and leads to the use 
of the modified Liouvillffireen approximations which are derived in the Appendix. 
In Section 3 we consider the application of these boundary conditions to the 
compound matrix method [l] and, in Section 4, we demonstrate the effectiveness of 
the asymptotic boundary conditions by computing certain unstable modes of the 
Blasius and the asymptotic suction boundary-layer profiles. These computations are 
intended to illustrate the effect of both moderate and large values of the Reynolds 
number. Finally, in Section 5, we give a brief discussion of a third-order eigenvalue 
problem which arises from perturbations about the Blasius boundary-layer profile. In 
particular, it is shown how the compound matrix method can be adapted to deal with 
problems, such as this one, in which the governing equation does not have a constant 
tail. 



THE ORR-SOMMERFELD PROBLEM 211 

2. THE BOUNDARY CONDITIONS AT INFINITY 

2.1. The Constant Tail Conditions 

To deal with the boundary conditions (1.2b), we first observe that as z + co, 
U(z) -+ 1 and U”(z) + 0 for boundary-layer flows, and in this limit (1.1) becomes 

(II2 - a2)(D2 - P’)fb = 0, (2.la) 

where 

p= [i&(1 -c)+c~~]“~ with Re@?) > 0. (2. lb) 

Thus, as z + 03 the bounded solutions of (1.1) have the asymptotic behavior 

$i(z) - constant X eCaz and &(z) - constant x ePDz. (2.2) 

If we now choose z, to be sufftciently large so that, for z > z,, U(z) and U”(z) are 
numerically indistinguishable from their corresponding values at infinity, then @r, I$~ 
and their derivatives can be treated as continuous at z = z,. If, for convenience, we 
now let 0 = [$, $‘, #“, #“‘]’ then, on omitting the overall exponential factors, the 
constant tail initial conditions for +i and +2 at z = z, are given by 

4, = [ 1, -a, a2, -CL3]T and $2 = [l,G> P2, -P’l’. (2.3a) 

These initial conditions have customarily been used in connection with the method of 
shooting to obtain two linearly independent solutions of (1.1) by integrating from z, 
to 0. 

An equivalent form of these conditions, which are useful for some purposes, can be 
obtained by letting $ = AO, + B4,. If the first two components of this equation are 
used to determine A and B, then the last two components lead to the conditions 

4” + @ + a)#’ + a@ = 0 

and 

4”’ - @I’ + a/l + a*)#’ - a/?@ + a)# = 0 

(2.3b) 

at z=zoo. In particular, when we integrate from 0 to z,, Eq. (2.3b) provides the 
necessary matching conditions at z = z, . 

The constant tail conditions (2.3a), (2.3b) are equivalent to those given by Itoh 
[ 21, Mack [3] and Keller [4] for the Orr-Sommerfeld problem. It is also of interest 
to note that conditions of this type had been used earlier by Brown [S] and Mack [6] 
in their work on the stability of compressible boundary layers and they have recently 
been discussed in greater generality by Keller [4]. 

581/38/3-Z 
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2.2. The Asymptotic Initial Conditions 

Consider now the possibility of deriving asymptotic approximations to the 
solutions $, and $* for zi < z < co, where 1 z, - z,I > 6 for some positive 6. A more 
precise estimate of 6 will be given later. 

It can be seen from (2.2) that 4, is largely inviscid in character whereas &, being 
dependent on the Reynolds number R, is a solution of viscous type. According to the 
usual asymptotic theory [ 7 1, therefore, the first approximation to $, is of the form 

4,(z) = 4:“‘(z) + Oi(aR)-’ I for lz-zrI>6, (2.4) 

where #I”’ is the solution of Rayleigh’s equation 

(U - c)(LP - c?)$qO) - U”qqO = 0, (2.5) 

which has the asymptotic behavior #I”‘(z) N constant X ecnr as z -+ co. To derive 
asymptotic approximations to the initial conditions for 4, at z = z, , we first let 

f, = ~:““/~lo’, f* = &qp, f3 = rpy/#I”‘. (2.6) 

It then follows that f, must satisfy the first-order nonlinear equation 

f’, +ft - a* + & 
( i 

=o (2.7) 

and the initial condition f,(zz) = ---a, where zg > z,. A simple calculation also 
shows that 

f*=a?+-& and j-3 =f,f* + &- (p;,* . (2.8) 

Hence, if we fix the normalization of 4, by requiring that $,(z,) = 1 then we can 
approximate #i and its derivatives at z = z, with an error of the order of (aR)- ’ by 

(2.9) 

where f, is obtained by integrating (2.7) from zz, to z,, and f2 and f, are given by 
(2.8). Equation (2.9) then provides the required asymptotic initial conditions for +, at 
z=zl. 

To derive the corresponding initial conditions for the viscous solution #*, it is 
necessary to obtain an asymptotic approximation to ti2 which is uniformly valid in 
the infinite interval [z, , co). The usual Liouville-Green (or WKBJ) approximation to 
I+$*, which has been widely used in the study of the stability of bounded flows, is not 
adequate for this purpose since it does not remain uniformly valid as z -+ co. Instead, 
as discussed in the Appendix, it is necessary to use the modified Liouville-Green 
approximation 

&(z) = constant X (U- c))5’4ee011( 1 -P--‘H,(z) + O@~‘)), (2.10) 
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where q(z) and H,(z) are given by Eqs. (A12) and (A13), respectively. For 
convenience, we have fixed the normalization of q and H, by requiring that I = 0 
and H,(z,) = 0. Clearly then we can approximate #2 and its derivatives at z = z, , to 
within a common multiplicative factor, by 

$2 = 1, 

where 

4; = -P{q’ + &Tp-’ + op-‘>I, 

d5’ =p2~‘(~’ + 2gP-’ + Ocp’)}, 
(2.11) 

4;” = -p’ff”(v + ;gp + o(j-‘)}, 

and 
U’ 

g= u-c (2.12) 

are to be evaluated at z = zr . Equations (2.11) thus provide the required asymptotic 
initial conditions for 42 at z = z, . 

It can easily be seen that (2.9) and (2.11) reduce to the corresponding constant tail 
conditions as z, -+ z, or co. Unlike (2.3a), (2.3b), however, the asymptotic approx- 
imations (2.9) and (2.11) remain valid even when U and u” cannot be approximated 
by their values at infinity. 

The accuracy of these parameter expansions clearly depends on the largeness of 
IpI. In dealing with problems for which I/?1 is not large, however, the coordinate 
expansions suggested recently by Monkewitz and Monkewitz [S] would appear to 
offer a promising alternative. 

3. THE COMPOUND MATRIX METHOD 

3.1. Computation of the Eigenvalue 

For numerical purpose it is convenient to write the Orr-Sommerfeld equation as a 
system of first-order equations. As before, if we let 4 = [ $, #‘, Qi”, 4”’ 1 r then Eq. ( 1. I ) 
becomes 

9’ = A+, where A = (3.1) 

and 

a, = -{a4 + iaR[a2(U-cc) + V’]}. 

a3 = 2a2 + iaR(CJ - c). 
(3.2) 

In the usual application of the shooting method, the solutions 4, and I#! are obtained 
separately by integrating (3.1) from either z,,, or z, to z = 0. For large values of the 
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Reynolds number, however, the Orr-Sommerfeld equation is inherently unstable and 
it is well known that 4, and $* can quickly become numerically dependent. Several 
methods have been suggested to overcome this difftculty, including the method of 
orthonormalization [9-l I], the Riccati method [ 12, 131 and the compound matrix 
method [ 11. The asymptotic initial conditions (2.9) and (2.11) can be used in 
conjunction with each of these methods but we have chosen to use the compound 
matrix method for illustrative purposes throughout this paper. 

The compound matrix method [ 11 is based on considering the 2 x 2 minors of the 
solution matrix @ = [+, ,+*I. These minors are given by 

Yl=$,9;-4;4*, Y4=$KK-$;)&, 

Y2=4*4;-~;1$*~ Y5=!&&-4T’f4, 

Y, = 4,K - 41;1$% 3 y, = tj;qj;” - @Jqi;, 

and they satisfy the quadratic identity 

YIY, -Y,Y, +Y,Y, = O- 

On differentiating Eqs. (3.3) and using Eq. (l.l), it is easy to show that y, 
satisfy the equations 

Y’, =Y21 Y; =Ys, 

Y;=Y,+Y,T Y;=--a,Y,+a3Y4+Y6~ 

y;=a,y,+y,> Y;, = -a,y,* 

(3.3) 

(3.4) 

y, must 

(3.5) 

Consider now the constant tail initial conditions for y, ,..., y, at z = z,. On 
substituting (2.3a) into (3.3), we obtain 

y, =P-a, y, = a/l2 - a2P, 

y2 = -P’ + a’, y, = -aP’ + a3P, (3.6) 

y3=p3-a3, y, = a’/l” - a3j3’, 

at z=z,. Similarly, on substituting (2.9) and (2.11) into (3.3), we obtain the 
asymptotic initial conditions 

YI =PIa’ + Gg +.f1>P-’ + w-‘>l~ 

y, = -p’#(q’ + 2gp-L + O@-‘>I, 

y, =p3~‘2{~’ + $gP-’ + Ocp’)}, 

Y, = -P’r’wf, + w, g +m- + OW’)L (3.7) 

Y, =P”r”lKfl + Y,sP-’ + w-‘>L 

Y, =P’t’ktfZ + ($fZg +.h)fi-’ + o@-2>t, 
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where 7’ and g, together with f,, fi and f3, are to be evaluated at z = z, . The 
boundary conditions (1.2a) then lead to the eigenvalue relation 

(3.8) 

The solution of the Orr-Sommerfeld problem by the compound matrix method 
thus involves the integration of Eqs. (3.5), subject to the initial conditions given by 
either (3.6) or (3.7). An iterative procedure must then be used to vary the eigenvalue 
parameter c (say) until the eigenvalue relation (3.8) is satisfied. 

3.2. Computation of the Eigenfunctions 

Once the required eigenvalue has been obtained by the method just described, we 
can then proceed to the determination of the corresponding eigenfunction 4. In [ 1 ] it 
was shown that 4 must satisfy the equations 

Y,PYY,9’+Y,$=o~ (3.9) 

Y,#“‘-Y.?& +y,#=O, (3. IO) 

Y*$“’ -Y34” +y,# = 03 (3.11) 

y, q5”’ - y, #” + y, 4 = 0. (3.12) 

We now wish to show, however, that only Eq. (3.9) can be used to obtain 0 by a 
forward integration from z = 0. 

Consider first the constant tail initial conditions for which y,,..., y, are known on 
the interval [0, zm]. For z > z,, Eqs. (3.9)-(3.12) have the asymptotic forms 

4” + tp + a)@’ + a@ = 0, (3.13) 

4,’ - t.b2 + aP + a’)#’ - a/3(p + a)# = 0, (3.14) 

@ + a)$“’ + @I’ + a/l + a’)@” - a’j3’$ = 0, (3.15) 

4” + @ + a)#” + a/?$’ = 0. (3.16) 

The roots of the characteristic equations associated with (3.13)-(3.16) are given by 
(-a, -P), (-a, -/3, ,f3 + a), (-a, -P, api@ + a)), and (-a, -pI O), respectively. Thus, 
as z+ co, any solution of Eq. (3.9) will automatically satisfy the boundary 
conditions (1.2b). Equations (3.10)-(3.12), however, admit solutions which do not 
decay to zero as z -+ co. This difficulty is particularly severe in the case of Eq. (3.10) 
because the inevitable presence of some multiple of the solution e(4+a)Z will render a 
forward integration inherently unstable. In principle, therefore, only Eq. (3.9) can be 
used to obtain the eigenfunction 4. 

It should be noted, of course, that Eq. (3.9) is singular at z = 0 and hence it is not 
possible to initiate the integration from the origin. This minor difficulty can easily be 
overcome, however, by integrating the Orr-Sommerfeld equation itself one step 
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forward from 0 to h (say). For this purpose we note that if we fix the normalization 
of 4 such that 4”(O) = 1 then from (3.11) we have #“‘(O) = y,(O)/y,(O); alternatively, 
by using (3.12) or the quadratic identity (3.4), we have the equivalent condition 
4”‘(O) =y,(O)/y,(O). Thus, the initial conditions for I$ at z = 0 are completely 
specified. The values of 4(h) can then be used as the initial conditions for Eq. (3.9). 
The solution of Eq. (3.9) obtained in this way clearly satisfies the boundary 
conditions at z = 0 and co. Moreover, by using an argument identical to the one 
given in [ I], we can also show that 4 is necessarily a solution of the Orr-Sommer- 
field equation and it is therefore the required eigenfunction. 

In the case of the asymptotic initial conditions, y, ,..., y, are known on the interval 
10, z, ] and on this interval the eigenfunction can be found by the method described 
above. For z > z, , the integration of Eq. (3.9) can then be continued with y, , y,, and 
y4 replaced by their uniform asymptotic approximations (3.7). 

4. NUMERICAL EXAMPLES 

4.1. The Blasius Boundary-Layer Profile 

To assess the effectiveness of the asymptotic initial conditions and the compound 
matrix method, we consider first the Orr-Sommerfeld problem for the Blasius 
boundary-layer profile. Thus we let V(z) = F’(z), where F(z) is the Blasius function 
defined by 

with 

F(O) = F’(0) = 0 and F’(z)-+ 1 as z-+ co. (4.lb) 

Following previous work on this problem we let a = 0.179 and R = 580, and then 
consider the unstable mode for which Grosch and Orszag [ 141 have obtained the 
“exact” eigenvalue 

c = 0.36412286 + iO.00795972. (4.2) 

For these values of the parameters, Ipi’ z 66 and such a small value of IpI’ shows 
that this problem constitutes a severe test case for the accuracy of the asymptotic 
initial conditions. It should also be noted that the basic velocity profile for this 
problem tends to its free-stream value quite rapidly and this behavior is clearly 
advantageous when using the constant tail initial conditions. 

The results obtained by applying both the constant tail and the asymptotic initial 
conditions are presented in Table I. All of the calculations were made on a CDC- 
6600 computer using a Runge-Kutta-Gill procedure with constant stepsize and 
single-precision arithmetic. In cases where the constant tail conditions were used, the 
system of equations (3.5) was integrated from z, to 0 using a stepsize of 0.005. An 
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TABLE I 

A Comparison of the Eigenvalue c Obtained by Using the Constant Tail and the Asymptotic Initial 
Conditions for the Blasius Boundary Layer with u = 0.179 and R = 580” 

IO 
9 
8 
1 
6 
5 
4 
3 
2 

Constant Tail Asymptotic 

.36412286 
9 

.m----436 

.-mm-6069 

.m--69837 

.Y909075 
./8607840 
.40733290 
.39501348 

.00795972 8 
1 

I -  , , 
.--m-4571 
:--74582 
.m -595536 

-.00421576 
-.0355 1736 
-.0657002 1 

.36412290 .00795974 
1 5 

,...m..89 ,-..~-.64 
. ..-..-17 .--m--762 
.---ml514 .-m--3860 
.-m-O8436 :--85430 
.---05850 :--77544 
:--22744 : -830916 
:- -40740 : 1009819 

8 

” The relative errors corresponding to different choices of z,, and z, are of the order of 10 ‘. 

iteration was then performed on the eigenvalue c until the eigenvalue relation (3.8) 
was satisfied. The behavior of y, near the origin is shown in Fig. 1. The values of c 
given in Table I should be compared with the “exact” value (4.2). It can readily be 
seen that the accuracy of the computed eigenvalue, though excellent when z, = 10, 
deteriorates rapidly as z, takes on succesively smaller values. This is entirely to be 
expected because the validity of the constant tail conditions depends crucially on I/ 
and U” satisfying the free-stream conditions at z = z,, . 

When using the asymptotic initial conditions, it is first necessary to integrate 
Eq. (2.7) from zz to z1 to obtainf,(z,). For the present calculations, we let z*, = 10 
as the errors in approximating U and U” at z = 10 by 1 and 0, respectively, are then 
of the order of 10P9. We also found that it is sufficient to integrate (2.7) using a 
stepsize of 0.05. The behavior off, for 2 < z < 10 is shown in Fig. 2. We observe that 
f, begins to deviate significantly from its initial (constant tail) value for z < 7. This, 
of course, clearly indicates that U and U” can no longer be approximated by their 
free-stream values and the behavior off, is consistent therefore with the observed loss 
of accuracy in the eigenvalue computations using the constant tail initial conditions. 
Nevertheless, it should be emphasized that f, remains a valid approximation to @,/p, 
for 1 z - z,I > 6 > 0. A more precise estimate for 6 can be obtained from the 
asymptotic theory of the Orr-Sommerfeld equation. According to that theory, the 
behavior of 4, is essentially inviscid provided [(z - zc) (aRCI:.)"" 1 2 10. IThere is also 
a certain domain in the complex z-plane in which 4, exhibits viscous behavior but 
this is nol relevant to the present discussions.] For the present values of the 
prameters, this criterion gives 6 z 3.1 and, since Iz,./ z 1.2, we see that the least value 
of z, for which the asymptotic initial conditions can be used with confidence is about 
4.3. 

Once the values off, and hence f, and fi are known at z = z, . Eqs. (3.5) can be 
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-1.0 I I 
1 z 2 3 

FIG. I. The behavior of ,I’~ for the Blasius boundary-layer profile with a = 0.179, R = 580, 
c = 0.36412286 + iO.00795972, and the maximum of ly, / normalized to unity. 

integrated from zi to 0 subject to the asymptotic initial conditions (3.7). The values 
of c given in Table I for different choices of zi were all computed using a stepsize of 
0.005. By comparing these results to those obtained using the constant tail 
conditions, it is clear that the eigenvalue can be determined to a certain prescribed 
accuracy by integrating (3.5) over a smaller interval if the asymptotic initial 
conditions are used. Since the additional work required for the numerical solution of 
(2.7) is relatively insignificant, a considerable saving in computational labor is thus 
possible. 

It is also of some interest to compare the asymptotic approximations (3.7) with the 
values of y, ,..., y, obtained by the numerical solution of (3.5). For this purpose we 
normalize y, ,..., y6 with respect to yi (for z > 0) by defining the ratios 

q2 =Yz/YlY q3 = Y,/Y, 3 q4 = Y4lY 13 45 = YdY, 3 q6 = Y,/Y, * (4*3) 

The behavior of q2,..., q6 based on the asymptotic approximations (3.7) and the 
numerical solution of (3.5) are shown in Fig. 3 for 2 Q z < 10. It can readily be seen 
from these results that (3.7) provide, to within an overall multiplicative factor, 
excellent approximations to y, ,..., y6 even for relatively small values of z. This, of 
course, is the basis for the success of the asymptotic initial conditions. 
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2 

FIG. 2. The behavior off, for the Blasius boundary-layer profile. 

In the present calculations, we have used an exessively small integration stepsize in 
order to isolate the effect of the magnitudes of z, and zi on the accuracy of the 
eigenvalues. When using the asymptotic initial conditions, it is sufficient for most 
purposes to integrate (3.5) from z, z 5 using a stepsize of 0.025 to obtain results 
correct to four significant figures for the given values of a and R. 

We have also used the procedure described in Section 3.2 to compute the 
corresponding eigenfunction and the results obtained using both sets of initial 
conditions were found to be in excellent agreement with those given by Itoh [2]. 

4.2. The Asymptotic Suction Boundary-Layer Profile 

As a second example, consider the asymptotic suction boundary-layer profile for 
which U(z) = 1 - e-‘. This is a flow for which instability is known to occur for large 
values of the Reynolds number. It is also a flow which tends to its free-stream value 
more slowly than the Blasius boundary layer. Indeed, to approximated U and U” by 
their respective free-stream values with an error of the order of IO-‘, it is necessary 
to take z > 16. It can be expected therefore that the use of the asymptotic initial 
conditions will lead to a very substantial reduction in the length of the interval over 
which (3.5) must be integrated. To illustrate this point, we have computed the eigen- 
value for the unstable mode with a = 0.14 and R = 10’ using both the constant tail 
and the asymptotic initial conditions, and the results, corresponding to various 
choices of z, and z, , are presented in Table II. 
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/ 
-6 - -20 - i lm(q,) - 

I I I I IIII- I I I Illll 
2 4 6 8 10 2 4 6 8 10 

z i! 

FIG. 3. The behavior of the real and the imaginary parts of the ratios q2 ,..., q. for the Blasius 
boundary-layer profile. Resu!ts based on the numerical solution of (3.5) and the asymptotic approx- 
imations (3.7) are shown in solid and dashed lines, respectively. Note that the scales of the figures for 
the real and the imaginary parts differ by a factor of IO. 

TABLE II 

A Comparison of the Eigenvalue c Obtained by Using the Constant Tail and the Asymptotic Initial 
Conditions for the Asymptotic Suction Boundary Layer with a = 0.14 and R = 10'" 

Constant Tail Asymptotic 

z,orz, c, Ci k cr c, k 

16 .I3240567 
12 ,_..... 73 

8 :---I727 
7 :---4732 
6 .---55446 
5 .---93094 
4 : -420103 
3 : 804378 
2 .-4675156 
1 .-5549701 

.00296407 6 .13240567 
6 6 

.-----243 4 

.----5816 4 mm-m6 

.-mm-4272 3 6 

.---88592 3 6 
:--66437 2 5 
.-ml69051 2 ----2 

-.00274370 * ..-m.m.55 

-.01579627 * . . . ...-95 

.00296407 

----6 
4 

.-----397 

.-----373 

.-m---312 

.--mm-639 

6 
6 
6 
6 
6 
6 
6 
6 
5 
5 

“The relative errors corresponding to different choices of z,~ and zi are of the order of 10 k. 
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In the present calculations, we let z 2, = 16 and it is again sufficient to integrate 
(2.7) using a stepsize of 0.05. On the other hand, for a fixed value of z, or z, and 
regardless of which set of initial conditions were used, it was necessary to integrate 
(3.5) using a stepsize of 0.000625 to obtain convergence in the first seven digits of 
the eigenvalue. We found, however, that in order to determine an eigenvalue with a 
relative error of the order of lop5 (say), approximately a IO-fold reduction in CPU 
time is possible if the asymptotic rather than the constant tail conditions are used. 
This observation is consistent with the results given in Table II and, incidentally, it 
shows that the computational labor required for integrating (2.7) is in general 
negligible. It should also be noted that if an eigenvalue with about four significant 
figures is required, it is entirely adequate to let z, g 1 and h = 0.005 for the present 
values of a and R. These rather dramatic results are, of course, a direct consequence 
not only of the asymptotic character of the approximations (3.7) but also of the 
largeness of I,!I’ (g 1.2 x 104). Furthermore, as discussed in Section 4.1, 4, is essen- 
tially inviscid provided l(z - z,)(~~RUL)"~ 12 10 and, for the present values of the 
parameters, this criterion gives 6 z 0.44. Since 1~~1 2 0.14, the least value of z, which 
can be used with confidence is about 0.58. 

5. A THIRD-ORDER EIGENVALLJE PROBLEM WITH A NONCONSTANT TAIL 

Thus far we have restricted our attention to the numerical solution of singular 
eigenvalue problems of the Orr-Sommerfeld type which have a constant tail as 
z+ co. In this section, we wish to show, by means of a simple example, how the 
basic ideas presented in this paper can be applied to eigenvalue problems with a 
nonconstant tail. For this purpose, we shall discuss briefly a problem involving a 
third-order equation which is of some fluid mechanical interest. 

Consider then the equation 

4"' + Ff' + uF'#' + (1 -cr)F”# =O, (5.1) 

where c is a real parameter and 4 satisfies the boundary conditions 

4(O) = 4’(O) = 0, 

and 

4’(z)+ 0 exponentially as z + co. (5.2b) 

In Eq. (5. I), F(z) is again the Blasius function but, in keeping with previous work on 
this problem, we now take it to be the solution of the equation F"' + FF" = 0 rather 
than Eq. (4.la) but with the same boundary conditions (4.Ib). The eigenvalue 
problem defined by (5.1) and (5.2) first arose in the study by Stewartson [ 15 ] of 
certain perturbation solutions in boundary-layer theory and since then it has been the 
subject of numerous investigations 116-18 1. More recently, it has also been examined 
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by Wilks and Bramley [ 191 in connection with the application of the Riccati method 
to odd-order differential systems, and Bramley [20] has further concluded that this 
problem provides an example for which neither the compound matrix method nor the 
method of orthonormalization is applicable. From the following discussion, however, 
it will be clear that Bramley’s conclusions are erroneous and that, in fact, the 
compound matrix method provides a particularly simple method of treating the 
problem. 

To apply the procedure described in the preceding sections, we now let $ = 
[g, #‘, #“IT. If, as before, we let 9, and $* denote two linearly independent solutions of 
(5.1) which satisfy the boundary condition (5.2b), then the 2 X 2 minors of the 
solution matrix are 

On differentiating (5.3) and then eliminating the third derivatives by the use of (5.1), 
we have 

Y’, =y2, 

y; =-uF’y, -FY,+Y,> (5.4) 

y; =(I -o)F"Y,--~3. 

The eigenvalue relation is then simply y,(O) = 0, and the initial condition for y = 
[Yl, Y2, Y,]’ at some finite value of z follows directly from the corresponding 
conditions on +, and & which we shall now derive. 

For this purpose, we note that as z -+ co, the asymptotic form of (5.1) is 

4”’ t Q” t a#’ = 0, (5.5) 

where 1J= z -a and a = 1.216781. Clearly then one of the two bounded solutions of 
(5.1), #r (say), has the behavior 4, N constant. If we again choose z, to be a point 
such that for z > zco the Blasius function and its derivatives are numerically 
indistinguishable from their respective free-stream values, then to within a constant 
multiplicative factor the initial condition for I$~ at any z > z, is given by 

4, = [LO,OIT. (5.6) 

To obtain the initial condition for the second bounded solution +2, we shall first 
rewrite (5.5) in normal form. Thus, on substituting 4’ = exp(-ac’)w into (5.5), we 
obtain Weber’s equation 

If’ -- [it;2 - (a - f)]ly = 0. (5.7) 

It is useful to note that (5.7) has a simple turning point on the positive c-axis at 
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[, = 2(a - y2. For fixed o and [ % &,, the exponentially decaying solution of (5.7) 
has the asymptotic behavior 

ip - yU-’ exp(-aC2), (5.8) 

where we have adopted the usual normalization for the principal solution of (5.7), 
and this gives 

9; - (7’ exp(-f [‘) and 4; - -cl” exp(-$ [‘). (5.9) 

To approximate the initial condition for bz at some finite value of z = i, (say), we 
must require not only that z”oo > z, but also that i, 9 z,,, where z0 = &, + a. It is 
also convenient to normalize 42 so that #*(2^,) = 0 and then, on omitting an overall 
multiplicative factor, we have 

43 = [O, 1, -4, IT, (5.10) 

where [a = i, - a. The corresponding initial condition for y at z = f, follows 
directly from (5.6) and (5.10), and it is given by 

y= [l,-~m,o]=. (5.11) 

From this discussion, however, it is evident that the choice of i, for which (5.10) 
and (5.11) are valid depends critically on the value of 6. In the computation of the 
higher modes for which the values of u become large, it is often necessary to take 
f,9ZZ,. To avoid the need to integrate (5.4) over an excessively long interval, it is 
of some practical importance to consider the possibility of formulating initial 
conditions for +2 and y which can be applied at z = z,. The discussion in Section 2 
suggests that we let f = &‘/$i and it then follows from (5.5) and (5.9) that f satisfies 
the Jrst-order nonlinear equation 

f’+Cf+f2+a=0 with f (2,) = -la. (5.12) 

If we now normalize & so that g)2(f,) =0 then we can approximate the initial 
condition for o2 to within a multiplicative constant by 

+2 = [O, Lf (z)]’ at z=zm, (5.13) 

where f(z,) is obtained by integrating (5.12) from i, to zoc. The corresponding 
initial condition for y is therefore given by 

y= lLf(z),Ol’ at z=z,. (5.14) 

When z, = i,, it is clear that (5.13) and (5.14) are reducible to (5.10) and (5.11) 
respectively. 

The numerical solution of this eigenvalue problem then consists of integrating (5.4) 
from either z, or i, to 0, together with a Newtonian iteration scheme to determine 
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0. We have computed the values of cr for the first 20 modes, using both of the initial 
conditions (5.11) and (5.14), and the results thus obtained are in excellent agreement 
with those obtained previously [ 17, 191. 

It is also of some interest to note that the initial conditions (5.6) together with 
(5.10) or (5.13) can be used to obtain two linearly independent solutions of (5.1) and 
thus, contrary to the observation of Bramley [20], the usual method of shooting, 
together with orthonormalization, is equally applicable to this problem. Moreover, we 
believe that further refinements in the various initial conditions are possible, but this 
would involve exploiting some of the special features of (5.1). We have not pursued 
this line of inquiry, however, since our primary purpose has simply been to illustrate 
how some of the basic ideas described in the earlier sections of this paper can be 
applied to singular eigenvalue problems on infinite intervals which are not of the 
Orr-Sommerfeld type. 

APPENDIX: THE LIOUVILLE-GREEN APPROXIMATIONS 

The usual Liouville-Green (or WKBJ) approximations to the viscous solutions of 
the Orr-Sommerfeld equation were first derived by Heisenberg [21] and they have 
been used for a variety of purposes since then. In a second approximation to the 
bounded solution &(z) we have [22] 

&(z) = constant x (U- c)-5’4ee+‘*( 1 - A-‘Cl(z) + 0(1-‘)}, (Al) 

where 

A = (iaRUL)“* with Re(k) > 0, 642) 

and 

(A3) 

(A4) 

The lower limit of integration in Eq. (A3) is arbitrary but, without loss of generality, 
is usually chosen to be z, as indicated. Similarly, G,(z) is only defined to within an 
arbitrary additive constant which, following Eagles [23], we have taken to be zero. 
For bounded flows with c real and U(z) monotone increasing, Eq. (Al) provides a 
uniform approximation to 4*(z) in the domain 

-in < ph r(z) < $r and k<Iz-z,lGK, (A5) 

where 0 < k < K < co. Furthermore, in this domain approximation (Al) is valid in 
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the complete sense of Watson [24, p. 5431. For unbounded flows of the boundary 
layer type, however, it follows immediately from Eq. (A4) that 

as z++oo 646) 

and hence approximation (Al) does not remain uniformly valid as z -+ +co. 
In this Appendix, therefore, we wish to consider a modified form of the 

Liouville-Green approximation d2(z) which does remain uniformly valid as z -+ + co. 
For this purpose we first observe that as z -+ +a~ the Orr-Sommerfeld equation 
becomes 

(D2 - a2)(D2 - P’)$ = 0, (A7) 

where 

/I= [icfR(l -c)ta2]“* with Rev) > 0. (‘48) 

Thus, as z -+ tco, the bounded solutions of the Orr-Sommerfeld equation have the 
asymptotic behavior 

d,(z) - constant X e-“’ and $2(z) m constant X eCB’. (A9) 

These approximations do not depend on the magnitude of /I but when they are used 
for numerical purposes z, must be chosen sufftciently large so that U and U” are 
sensibly equal to 1 and 0, respectively. 

In the analogous situation for second-order equations, Olver [25] has shown how 
the Liouville-Green approximation can be rendered uniform at infinity by a simple 
redefinition of the large parameter. This corresponds in the present case to choosing p 
rather than 1 as the large parameter of the problem. Accordingly, we now rewrite the 
Orr-Sommerfeld equation in the form 

(D2 - cf2)2 4 - (p’ - a’) 
I 
E (D2 - a’)$L+ - E 41 = 0. (A 10) 

The Liouville-Green approximations to the viscous solutions of this equation can 
then be derived in the usual manner and, in a second approximation, we obtain 

&(z) = constant X (U - c)-5’4e-4q( 1 -pm ‘H,(z) t O(&‘)}, (Al 1) 

where 

?(z)=j2 (~)“*dz 
II (A12) 

and 
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-+‘rl+C. (A13) 

In Eq. (A 12), the lower limit of integration is again arbitrary but, for numerical 
purposes, it is convenient to choose it as we have done so that ~(2,) = 0. Similarly, it 
is convenient to choose the arbitrary constant C in Eq. (A13) so that H,(z,) = 0 and 
this gives 

C=- [( 
101 U’ ,,-+gg)(+$) 1;;,, (A14) 

The essential feature of this modified Liouville-Green approximation is that 
H,(z) - constant as z -+ +co and approximation (Al 1) therefore remains uniformly 
valid at infinity. 
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